数据库 · 2022年11月1日 0

mysql系列VIII-索引(6)-索引使用

索引是对数据库表中一列或多列的值进行排序的一种结构,使用索引可快速访问数据库表中的特定信息。

验证索引效率

在讲解索引的使用原则之前,先通过一个简单的案例,来验证一下索引,看看是否能够通过索引来提升数据查询性能。在演示的时候,我们还是使用之前准备的一张表 tb_sku , 在这张表中准备了1000w的记录。

1
2
3
4
5
6
7
mysql> select count(*) from tb_sku;
+———-+
| count(*) |
+———-+
| 10000000 |
+———-+
1 row in set (17.93 sec)

这张表中id为主键,有主键索引,而其他字段是没有建立索引的。 我们先来查询其中的一条记录,看看里面的字段情况,执行如下SQL:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
mysql> select * from tb_sku where id = 1 \G;
*************************** 1. row ***************************
id: 1
sn: 100000003145001
name: 华为Meta1
price: 87901
num: 9961
alert_num: 100
image: https://m.360buyimg.com/mobilecms/s720x720_jfs/t5590/64/5811657380/234462/5398e856/5965e173N34179777.jpg!q70.jpg.webp
images: https://m.360buyimg.com/mobilecms/s720x720_jfs/t5590/64/5811657380/234462/5398e856/5965e173N34179777.jpg!q70.jpg.webp
weight: 10
create_time: 2019-05-01 00:00:00
update_time: 2019-05-01 00:00:00
category_name: 真皮包
brand_name: viney
spec: 白色1
sale_num: 39
comment_num: 0
status: 1
1 row in set (0.00 sec)

可以看到即使有1000w的数据,根据id进行数据查询,性能依然很快,因为主键id是有索引的。 那么接下来,我们再来根据 sn 字段进行查询,执行如下SQL:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
mysql> select *from tb_sku where sn = ‘100000003145001’ \G;
*************************** 1. row ***************************
id: 1
sn: 100000003145001
name: 华为Meta1
price: 87901
num: 9961
alert_num: 100
image: https://m.360buyimg.com/mobilecms/s720x720_jfs/t5590/64/5811657380/234462/5398e856/5965e173N34179777.jpg!q70.jpg.webp
images: https://m.360buyimg.com/mobilecms/s720x720_jfs/t5590/64/5811657380/234462/5398e856/5965e173N34179777.jpg!q70.jpg.webp
weight: 10
create_time: 2019-05-01 00:00:00
update_time: 2019-05-01 00:00:00
category_name: 真皮包
brand_name: viney
spec: 白色1
sale_num: 39
comment_num: 0
status: 1
1 row in set (14.95 sec)

我们可以看到根据sn字段进行查询,查询返回了一条数据,结果耗时 14.95 sec,就是因为sn没有索引,而造成查询效率很低。
那么我们可以针对于sn字段,建立一个索引,建立了索引之后,我们再次根据sn进行查询,再来看一下查询耗时情况。

创建索引:

1
2
3
mysql> create index idx_sku_sn on tb_sku(sn);
Query OK, 0 rows affected (56.26 sec)
Records: 0 Duplicates: 0 Warnings: 0

创建索引成功,但是我们也看到了,创建这个索引我们花费了56.26 sec,由此可以看出索引的缺点,会占用一定空间,创建更新索引需要额外的时间。

然后再次执行相同的SQL语句,再次查看SQL的耗时

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
mysql> select *from tb_sku where sn = ‘100000003145001’ \G;
*************************** 1. row ***************************
id: 1
sn: 100000003145001
name: 华为Meta1
price: 87901
num: 9961
alert_num: 100
image: https://m.360buyimg.com/mobilecms/s720x720_jfs/t5590/64/5811657380/234462/5398e856/5965e173N34179777.jpg!q70.jpg.webp
images: https://m.360buyimg.com/mobilecms/s720x720_jfs/t5590/64/5811657380/234462/5398e856/5965e173N34179777.jpg!q70.jpg.webp
weight: 10
create_time: 2019-05-01 00:00:00
update_time: 2019-05-01 00:00:00
category_name: 真皮包
brand_name: viney
spec: 白色1
sale_num: 39
comment_num: 0
status: 1
1 row in set (0.00 sec)

我们明显会看到,sn字段建立了索引之后,查询性能大大提升。建立索引前后,查询耗时都不是一个数量级的。

最左前缀法则

如果索引了多列(联合索引),要遵守最左前缀法则。最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳跃某一列,索引将会部分失效(后面的字段索引失效)。
以 tb_user 表为例,我们先来查看一下之前 tb_user 表所创建的索引。

1
2
3
4
5
6
7
8
9
10
11
12
13
mysql> show index from tb_user;
+———+————+———————-+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression |
+———+————+———————-+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
| tb_user | 0 | PRIMARY | 1 | id | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 0 | idx_user_phone | 1 | phone | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_name | 1 | name | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 1 | profession | A | 16 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 2 | age | A | 22 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 3 | status | A | 24 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_email | 1 | email | A | 24 | NULL | NULL | YES | BTREE | | | YES | NULL |
+———+————+———————-+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
7 rows in set (0.02 sec)

在 tb_user 表中,有一个联合索引,这个联合索引涉及到三个字段,顺序分别为:profession,age,status。
对于最左前缀法则指的是,查询时,最左边的列,也就是profession必须存在,否则索引全部失效。
而且中间不能跳过某一列,否则该列后面的字段索引将失效。 接下来,我们来演示几组案例,看一下具体的执行计划:

按顺序使用联合索引

1
2
3
4
5
6
7
8
mysql> explain select * from tb_user where profession = ‘软件工程’ and age = 31 and status
-> = ‘0’;
+—-+————-+———+————+——+———————-+———————-+———+——————-+——+———-+———————–+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+———————-+———————-+———+——————-+——+———-+———————–+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta | idx_user_pro_age_sta | 54 | const,const,const | 1 | 100.00 | Using index condition |
+—-+————-+———+————+——+———————-+———————-+———+——————-+——+———-+———————–+
1 row in set, 1 warning (0.00 sec)

按顺序使用部分联合索引

1
2
3
4
5
6
7
mysql> explain select * from tb_user where profession = ‘软件工程’ and age = 31;
+—-+————-+———+————+——+———————-+———————-+———+————-+——+———-+——-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+———————-+———————-+———+————-+——+———-+——-+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta | idx_user_pro_age_sta | 49 | const,const | 1 | 100.00 | NULL |
+—-+————-+———+————+——+———————-+———————-+———+————-+——+———-+——-+
1 row in set, 1 warning (0.00 sec)

按顺序使用联合索引第一个

1
2
3
4
5
6
7
mysql> explain select * from tb_user where profession = ‘软件工程’;
+—-+————-+———+————+——+———————-+———————-+———+——-+——+———-+——-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+———————-+———————-+———+——-+——+———-+——-+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta | idx_user_pro_age_sta | 47 | const | 4 | 100.00 | NULL |
+—-+————-+———+————+——+———————-+———————-+———+——-+——+———-+——-+
1 row in set, 1 warning (0.00 sec)

以上的这三组测试中,我们发现只要联合索引最左边的字段 profession存在,索引就会生效,只不过索引的长度不同。 而且由以上三组测试,我们也可以推测出profession字段索引长度为47、age字段索引长度为2、status字段索引长度为5。

联合索引不使用第一个

1
2
3
4
5
6
7
mysql> explain select * from tb_user where age = 31 and status = ‘0’;
+—-+————-+———+————+——+—————+——+———+——+——+———-+————-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+—————+——+———+——+——+———-+————-+
| 1 | SIMPLE | tb_user | NULL | ALL | NULL | NULL | NULL | NULL | 24 | 4.17 | Using where |
+—-+————-+———+————+——+—————+——+———+——+——+———-+————-+
1 row in set, 1 warning (0.00 sec)

联合索引不使用前两个

1
2
3
4
5
6
7
mysql> explain select * from tb_user where status = ‘0’;
+—-+————-+———+————+——+—————+——+———+——+——+———-+————-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+—————+——+———+——+——+———-+————-+
| 1 | SIMPLE | tb_user | NULL | ALL | NULL | NULL | NULL | NULL | 24 | 10.00 | Using where |
+—-+————-+———+————+——+—————+——+———+——+——+———-+————-+
1 row in set, 1 warning (0.00 sec)

而通过上面的这两组测试,我们也可以看到索引并未生效,原因是因为不满足最左前缀法则,联合索引最左边的列profession不存在。

联合索引不使用中间部分索引

1
2
3
4
5
6
7
mysql> explain select * from tb_user where profession = ‘软件工程’ and status = ‘0’;
+—-+————-+———+————+——+———————-+———————-+———+——-+——+———-+———————–+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+———————-+———————-+———+——-+——+———-+———————–+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta | idx_user_pro_age_sta | 47 | const | 4 | 10.00 | Using index condition |
+—-+————-+———+————+——+———————-+———————-+———+——-+——+———-+———————–+
1 row in set, 1 warning (0.00 sec)

上述的SQL查询时,存在profession字段,最左边的列是存在的,索引满足最左前缀法则的基本条件。但是查询时,跳过了age这个列,所以后面的列索引是不会使用的,也就是索引部分生效,所以索引的长度就是47。

思考:

当执行SQL语句: explain select * from tb_user where age = 31 and status = '0' and profession = '软件工程'; 时,是否满足最左前缀法则,走不走上述的联合索引,索引长度?

1
2
3
4
5
6
7
mysql> explain select * from tb_user where age = 31 and status = ‘0’ and profession = ‘软件工程’;
+—-+————-+———+————+——+———————-+———————-+———+——————-+——+———-+———————–+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+———————-+———————-+———+——————-+——+———-+———————–+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta | idx_user_pro_age_sta | 54 | const,const,const | 1 | 100.00 | Using index condition |
+—-+————-+———+————+——+———————-+———————-+———+——————-+——+———-+———————–+
1 row in set, 1 warning (0.00 sec)

可以看到,是完全满足最左前缀法则的,索引长度54,联合索引是生效的。
注意 : 最左前缀法则中指的最左边的列,是指在查询时,联合索引的最左边的字段(即是第一个字段)必须存在,与我们编写SQL时,条件编写的先后顺序无关。

范围查询

联合索引中,出现范围查询(>,<),范围查询右侧的列索引失效。

1
2
3
4
5
6
7
8
mysql> explain select * from tb_user where profession = ‘软件工程’ and age > 30 and status
-> = ‘0’;
+—-+————-+———+————+——-+———————-+———————-+———+——+——+———-+———————–+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——-+———————-+———————-+———+——+——+———-+———————–+
| 1 | SIMPLE | tb_user | NULL | range | idx_user_pro_age_sta | idx_user_pro_age_sta | 49 | NULL | 2 | 10.00 | Using index condition |
+—-+————-+———+————+——-+———————-+———————-+———+——+——+———-+———————–+
1 row in set, 1 warning (0.00 sec)

当范围查询使用> 或 < 时,走联合索引了,但是索引的长度为49,就说明范围查询右边的status字段是没有走索引的。

1
2
3
4
5
6
7
8
mysql> explain select * from tb_user where profession = ‘软件工程’ and age >= 30 and
-> status = ‘0’;
+—-+————-+———+————+——-+———————-+———————-+———+——+——+———-+———————–+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——-+———————-+———————-+———+——+——+———-+———————–+
| 1 | SIMPLE | tb_user | NULL | range | idx_user_pro_age_sta | idx_user_pro_age_sta | 54 | NULL | 2 | 10.00 | Using index condition |
+—-+————-+———+————+——-+———————-+———————-+———+——+——+———-+———————–+
1 row in set, 1 warning (0.00 sec)

当范围查询使用>= 或 <= 时,走联合索引了,但是索引的长度为54,就说明所有的字段都是走索引的。

所以,**在业务允许的情况下,尽可能的使用类似于 >= 或 <= 这类的范围查询,而避免使用 > 或 <**。

索引失效情况

索引列运算

不要在索引列上进行运算操作, 索引将失效。
在tb_user表中,除了前面介绍的联合索引之外,还有一个索引,是phone字段的单列索引。

1
2
3
4
5
6
7
mysql> show index from tb_user where key_name = “idx_user_phone”;
+———+————+—————-+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression |
+———+————+—————-+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
| tb_user | 0 | idx_user_phone | 1 | phone | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
+———+————+—————-+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
1 row in set (0.01 sec)

当根据phone字段进行等值匹配查询时, 索引生效。

1
2
3
4
5
6
7
mysql> explain select * from tb_user where phone = ‘17799990015’;
+—-+————-+———+————+——-+—————-+—————-+———+——-+——+———-+——-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——-+—————-+—————-+———+——-+——+———-+——-+
| 1 | SIMPLE | tb_user | NULL | const | idx_user_phone | idx_user_phone | 46 | const | 1 | 100.00 | NULL |
+—-+————-+———+————+——-+—————-+—————-+———+——-+——+———-+——-+
1 row in set, 1 warning (0.00 sec)

当根据phone字段进行函数运算操作之后,索引失效。

1
2
3
4
5
6
7
mysql> explain select * from tb_user where substring(phone,10,2) = ’15’;
+—-+————-+———+————+——+—————+——+———+——+——+———-+————-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+—————+——+———+——+——+———-+————-+
| 1 | SIMPLE | tb_user | NULL | ALL | NULL | NULL | NULL | NULL | 24 | 100.00 | Using where |
+—-+————-+———+————+——+—————+——+———+——+——+———-+————-+
1 row in set, 1 warning (0.00 sec)

字符串不加引号

字符串类型字段使用时,不加引号,索引将失效。
接下来,我们通过两组示例,来看看对于字符串类型的字段,加单引号与不加单引号的区别:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
mysql> explain select * from tb_user where profession = ‘软件工程’ and age = 31 and status
-> = ‘0’;
+—-+————-+———+————+——+———————-+———————-+———+——————-+——+———-+———————–+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+———————-+———————-+———+——————-+——+———-+———————–+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta | idx_user_pro_age_sta | 54 | const,const,const | 1 | 100.00 | Using index condition |
+—-+————-+———+————+——+———————-+———————-+———+——————-+——+———-+———————–+
1 row in set, 1 warning (0.00 sec)

mysql> explain select * from tb_user where profession = ‘软件工程’ and age = 31 and status
-> = 0;
+—-+————-+———+————+——+———————-+———————-+———+————-+——+———-+———————–+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+———————-+———————-+———+————-+——+———-+———————–+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta | idx_user_pro_age_sta | 49 | const,const | 1 | 10.00 | Using index condition |
+—-+————-+———+————+——+———————-+———————-+———+————-+——+———-+———————–+
1 row in set, 2 warnings (0.00 sec)

手机号

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
mysql> explain select * from tb_user where phone = ‘17799990015’;
+—-+————-+———+————+——-+—————-+—————-+———+——-+——+———-+——-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——-+—————-+—————-+———+——-+——+———-+——-+
| 1 | SIMPLE | tb_user | NULL | const | idx_user_phone | idx_user_phone | 46 | const | 1 | 100.00 | NULL |
+—-+————-+———+————+——-+—————-+—————-+———+——-+——+———-+——-+
1 row in set, 1 warning (0.00 sec)

mysql> explain select * from tb_user where phone = 17799990015;
+—-+————-+———+————+——+—————-+——+———+——+——+———-+————-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+—————-+——+———+——+——+———-+————-+
| 1 | SIMPLE | tb_user | NULL | ALL | idx_user_phone | NULL | NULL | NULL | 24 | 10.00 | Using where |
+—-+————-+———+————+——+—————-+——+———+——+——+———-+————-+
1 row in set, 3 warnings (0.00 sec)

经过上面两组示例,我们会明显的发现,如果字符串不加单引号,对于查询结果,没什么影响,但是数据库存在隐式类型转换,索引将失效。

模糊查询

如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效。
接下来,我们来看一下这三条SQL语句的执行效果,查看一下其执行计划:
由于下面查询语句中,都是根据profession字段查询,符合最左前缀法则,联合索引是可以生效的,我们主要看一下,模糊查询时,%加在关键字之前,和加在关键字之后的影响。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
mysql> explain select * from tb_user where profession like ‘软件%’;
+—-+————-+———+————+——-+———————-+———————-+———+——+——+———-+———————–+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——-+———————-+———————-+———+——+——+———-+———————–+
| 1 | SIMPLE | tb_user | NULL | range | idx_user_pro_age_sta | idx_user_pro_age_sta | 47 | NULL | 4 | 100.00 | Using index condition |
+—-+————-+———+————+——-+———————-+———————-+———+——+——+———-+———————–+
1 row in set, 1 warning (0.00 sec)

mysql> explain select * from tb_user where profession like ‘%工程’;
+—-+————-+———+————+——+—————+——+———+——+——+———-+————-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+—————+——+———+——+——+———-+————-+
| 1 | SIMPLE | tb_user | NULL | ALL | NULL | NULL | NULL | NULL | 24 | 11.11 | Using where |
+—-+————-+———+————+——+—————+——+———+——+——+———-+————-+
1 row in set, 1 warning (0.00 sec)

mysql> explain select * from tb_user where profession like ‘%工%’;
+—-+————-+———+————+——+—————+——+———+——+——+———-+————-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+—————+——+———+——+——+———-+————-+
| 1 | SIMPLE | tb_user | NULL | ALL | NULL | NULL | NULL | NULL | 24 | 11.11 | Using where |
+—-+————-+———+————+——+—————+——+———+——+——+———-+————-+
1 row in set, 1 warning (0.00 sec)

经过上述的测试,我们发现,在like模糊查询中,在关键字后面加%,索引可以生效。而如果在关键字前面加了%,索引将会失效。

or连接条件

用or分割开的条件, 如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会被用到。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
mysql> explain select * from tb_user where id = 10 or age = 23;
+—-+————-+———+————+——+—————+——+———+——+——+———-+————-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+—————+——+———+——+——+———-+————-+
| 1 | SIMPLE | tb_user | NULL | ALL | PRIMARY | NULL | NULL | NULL | 24 | 13.75 | Using where |
+—-+————-+———+————+——+—————+——+———+——+——+———-+————-+
1 row in set, 1 warning (0.00 sec)

mysql> explain select * from tb_user where phone = ‘17799990017’ or age = 23;
+—-+————-+———+————+——+—————-+——+———+——+——+———-+————-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+—————-+——+———+——+——+———-+————-+
| 1 | SIMPLE | tb_user | NULL | ALL | idx_user_phone | NULL | NULL | NULL | 24 | 13.75 | Using where |
+—-+————-+———+————+——+—————-+——+———+——+——+———-+————-+
1 row in set, 1 warning (0.00 sec)

由于age没有索引,所以即使id、phone有索引,索引也会失效。所以需要针对于age也要建立索引。

然后,我们可以对age字段建立索引。

1
2
3
4
5
6
7
8
9
10
mysql> create index idx_user_age on tb_user(age);
Query OK, 0 rows affected (0.03 sec)

mysql> show index from tb_user where Key_name=”idx_user_age”;
+———+————+————–+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression |
+———+————+————–+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
| tb_user | 1 | idx_user_age | 1 | age | A | 19 | NULL | NULL | YES | BTREE | | | YES | NULL |
+———+————+————–+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
1 row in set (0.00 sec)

建立了索引之后,我们再次执行上述的SQL语句,看看前后执行计划的变化。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
mysql> explain select * from tb_user where id = 10 or age = 23;
+—-+————-+———+————+————-+———————-+———————-+———+——+——+———-+————————————————+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+————-+———————-+———————-+———+——+——+———-+————————————————+
| 1 | SIMPLE | tb_user | NULL | index_merge | PRIMARY,idx_user_age | PRIMARY,idx_user_age | 4,2 | NULL | 3 | 100.00 | Using union(PRIMARY,idx_user_age); Using where |
+—-+————-+———+————+————-+———————-+———————-+———+——+——+———-+————————————————+
1 row in set, 1 warning (0.00 sec)

mysql> explain select * from tb_user where phone = ‘17799990017’ or age = 23;
+—-+————-+———+————+————-+—————————–+—————————–+———+——+——+———-+——————————————————-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+————-+—————————–+—————————–+———+——+——+———-+——————————————————-+
| 1 | SIMPLE | tb_user | NULL | index_merge | idx_user_phone,idx_user_age | idx_user_phone,idx_user_age | 46,2 | NULL | 3 | 100.00 | Using union(idx_user_phone,idx_user_age); Using where |
+—-+————-+———+————+————-+—————————–+—————————–+———+——+——+———-+——————————————————-+

最终,我们发现,当or连接的条件,左右两侧字段都有索引时,索引才会生效

数据分布影响

如果MySQL评估使用索引比全表更慢,则不使用索引。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
mysql> explain select * from tb_user where phone >= ‘17799990005’;
+—-+————-+———+————+——+—————-+——+———+——+——+———-+————-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+—————-+——+———+——+——+———-+————-+
| 1 | SIMPLE | tb_user | NULL | ALL | idx_user_phone | NULL | NULL | NULL | 24 | 79.17 | Using where |
+—-+————-+———+————+——+—————-+——+———+——+——+———-+————-+
1 row in set, 1 warning (0.00 sec)

mysql> explain select * from tb_user where phone >= ‘17799990015’;
+—-+————-+———+————+——-+—————-+—————-+———+——+——+———-+———————–+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——-+—————-+—————-+———+——+——+———-+———————–+
| 1 | SIMPLE | tb_user | NULL | range | idx_user_phone | idx_user_phone | 46 | NULL | 9 | 100.00 | Using index condition |
+—-+————-+———+————+——-+—————-+—————-+———+——+——+———-+———————–+
1 row in set, 1 warning (0.00 sec)

经过测试我们发现,相同的SQL语句,只是传入的字段值不同,最终的执行计划也完全不一样,这是为什么呢?

就是因为MySQL在查询时,会评估使用索引的效率与走全表扫描的效率,如果走全表扫描更快,则放弃索引,走全表扫描。 因为索引是用来索引少量数据的,如果通过索引查询返回大批量的数据,则还不如走全表扫描来的快,此时索引就会失效。
接下来,我们再来看看 is null 与 is not null 操作是否走索引。
执行如下两条语句 :

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
mysql> explain select * from tb_user where profession is null;
+—-+————-+———+————+——+———————-+———————-+———+——-+——+———-+———————–+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+———————-+———————-+———+——-+——+———-+———————–+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta | idx_user_pro_age_sta | 47 | const | 1 | 100.00 | Using index condition |
+—-+————-+———+————+——+———————-+———————-+———+——-+——+———-+———————–+
1 row in set, 1 warning (0.00 sec)

mysql> explain select * from tb_user where profession is not null;
+—-+————-+———+————+——+———————-+——+———+——+——+———-+————-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+———————-+——+———+——+——+———-+————-+
| 1 | SIMPLE | tb_user | NULL | ALL | idx_user_pro_age_sta | NULL | NULL | NULL | 24 | 100.00 | Using where |
+—-+————-+———+————+——+———————-+——+———+——+——+———-+————-+
1 row in set, 1 warning (0.00 sec)

可以看到专业为空的比较少走了索引,不为空的数据太多,直接走了全表扫描

接下来,我们做一个操作将profession字段值全部更新为null。

1
2
3
mysql> update tb_user set profession = null;
Query OK, 24 rows affected (0.00 sec)
Rows matched: 24 Changed: 24 Warnings: 0

然后,再次执行上述的两条SQL,查看SQL语句的执行计划。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
mysql> explain select * from tb_user where profession is null;
+—-+————-+———+————+——+———————-+——+———+——+——+———-+————-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+———————-+——+———+——+——+———-+————-+
| 1 | SIMPLE | tb_user | NULL | ALL | idx_user_pro_age_sta | NULL | NULL | NULL | 24 | 100.00 | Using where |
+—-+————-+———+————+——+———————-+——+———+——+——+———-+————-+
1 row in set, 1 warning (0.00 sec)

mysql> explain select * from tb_user where profession is not null;
+—-+————-+———+————+——-+———————-+———————-+———+——+——+———-+———————–+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——-+———————-+———————-+———+——+——+———-+———————–+
| 1 | SIMPLE | tb_user | NULL | range | idx_user_pro_age_sta | idx_user_pro_age_sta | 47 | NULL | 1 | 100.00 | Using index condition |
+—-+————-+———+————+——-+———————-+———————-+———+——+——+———-+———————–+
1 row in set, 1 warning (0.00 sec)

最终我们看到,一模一样的SQL语句,先后执行了两次,结果查询计划是不一样的,为什么会出现这种现象,这是和数据库的数据分布有关系。查询时MySQL会评估,走索引快,还是全表扫描快,如果全表扫描更快,则放弃索引走全表扫描。 因此,is null 、is not null是否走索引,得具体情况具体分析,并不是固定的。

SQL提示

目前tb_user表的数据情况如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
mysql> select * from tb_user;
+—-+——–+————-+———————–+——————–+——+——–+——–+———————+
| id | name | phone | email | profession | age | gender | status | createtime |
+—-+——–+————-+———————–+——————–+——+——–+——–+———————+
| 1 | 吕布 | 17799990000 | lvbu666@163.com | 软件工程 | 23 | 1 | 6 | 2001-02-02 00:00:00 |
| 2 | 曹操 | 17799990001 | caocao666@qq.com | 通讯工程 | 33 | 1 | 0 | 2001-03-05 00:00:00 |
| 3 | 赵云 | 17799990002 | 17799990@139.com | 英语 | 34 | 1 | 2 | 2002-03-02 00:00:00 |
| 4 | 孙悟空 | 17799990003 | 17799990@sina.com | 工程造价 | 54 | 1 | 0 | 2001-07-02 00:00:00 |
| 5 | 花木兰 | 17799990004 | 19980729@sina.com | 软件工程 | 23 | 2 | 1 | 2001-04-22 00:00:00 |
| 6 | 大乔 | 17799990005 | daqiao666@sina.com | 舞蹈 | 22 | 2 | 0 | 2001-02-07 00:00:00 |
| 7 | 露娜 | 17799990006 | luna_love@sina.com | 应用数学 | 24 | 2 | 0 | 2001-02-08 00:00:00 |
| 8 | 程咬金 | 17799990007 | chengyaojin@163.com | 化工 | 38 | 1 | 5 | 2001-05-23 00:00:00 |
| 9 | 项羽 | 17799990008 | xiaoyu666@qq.com | 金属材料 | 43 | 1 | 0 | 2001-09-18 00:00:00 |
| 10 | 白起 | 17799990009 | baiqi666@sina.com | 机械工程及其自动化 | 27 | 1 | 2 | 2001-08-16 00:00:00 |
| 11 | 韩信 | 17799990010 | hanxin520@163.com | 无机非金属材料工程 | 27 | 1 | 0 | 2001-06-12 00:00:00 |
| 12 | 荆轲 | 17799990011 | jingke123@163.com | 会计 | 29 | 1 | 0 | 2001-05-11 00:00:00 |
| 13 | 兰陵王 | 17799990012 | lanlinwang666@126.com | 工程造价 | 44 | 1 | 1 | 2001-04-09 00:00:00 |
| 14 | 狂铁 | 17799990013 | kuangtie@sina.com | 应用数学 | 43 | 1 | 2 | 2001-04-10 00:00:00 |
| 15 | 貂蝉 | 17799990014 | 84958948374@qq.com | 软件工程 | 40 | 2 | 3 | 2001-02-12 00:00:00 |
| 16 | 妲己 | 17799990015 | 2783238293@qq.com | 软件工程 | 31 | 2 | 0 | 2001-01-30 00:00:00 |
| 17 | 芈月 | 17799990016 | xiaomin2001@sina.com | 工业经济 | 35 | 2 | 0 | 2000-05-03 00:00:00 |
| 18 | 嬴政 | 17799990017 | 8839434342@qq.com | 化工 | 38 | 1 | 1 | 2001-08-08 00:00:00 |
| 19 | 狄仁杰 | 17799990018 | jujiamlm8166@163.com | 国际贸易 | 30 | 1 | 0 | 2007-03-12 00:00:00 |
| 20 | 安琪拉 | 17799990019 | jdodm1h@126.com | 城市规划 | 51 | 2 | 0 | 2001-08-15 00:00:00 |
| 21 | 典韦 | 17799990020 | ycaunanjian@163.com | 城市规划 | 52 | 1 | 2 | 2000-04-12 00:00:00 |
| 22 | 廉颇 | 17799990021 | lianpo321@126.com | 土木工程 | 19 | 1 | 3 | 2002-07-18 00:00:00 |
| 23 | 后羿 | 17799990022 | altycj2000@139.com | 城市园林 | 20 | 1 | 0 | 2002-03-10 00:00:00 |
| 24 | 姜子牙 | 17799990023 | 37483844@qq.com | 工程造价 | 29 | 1 | 4 | 2003-05-26 00:00:00 |
+—-+——–+————-+———————–+——————–+——+——–+——–+———————+
24 rows in set (0.00 sec)

索引情况如下:

1
2
3
4
5
6
7
8
9
10
11
12
mysql> show index from tb_user;
+———+————+———————-+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression |
+———+————+———————-+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
| tb_user | 0 | PRIMARY | 1 | id | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 0 | idx_user_phone | 1 | phone | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_name | 1 | name | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 1 | profession | A | 16 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 2 | age | A | 22 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 3 | status | A | 24 | NULL | NULL | YES | BTREE | | | YES | NULL |
+———+————+———————-+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
6 rows in set (0.00 sec)

执行SQL : explain select * from tb_user where profession = '软件工程';

1
2
3
4
5
6
7
mysql> explain select * from tb_user where profession = ‘软件工程’;
+—-+————-+———+————+——+———————-+———————-+———+——-+——+———-+——-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+———————-+———————-+———+——-+——+———-+——-+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta | idx_user_pro_age_sta | 47 | const | 4 | 100.00 | NULL |
+—-+————-+———+————+——+———————-+———————-+———+——-+——+———-+——-+
1 row in set, 1 warning (0.00 sec)

查询走了联合索引。

执行SQL,创建profession的单列索引:create index idx_user_pro on tb_user(profession);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
mysql> create index idx_user_pro on tb_user(profession);
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> show index from tb_user;
+———+————+———————-+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression |
+———+————+———————-+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
| tb_user | 0 | PRIMARY | 1 | id | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 0 | idx_user_phone | 1 | phone | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_name | 1 | name | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 1 | profession | A | 16 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 2 | age | A | 22 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 3 | status | A | 24 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro | 1 | profession | A | 16 | NULL | NULL | YES | BTREE | | | YES | NULL |
+———+————+———————-+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
7 rows in set (0.00 sec)

创建单列索引后,再次执行A中的SQL语句,查看执行计划,看看到底走哪个索引。

1
2
3
4
5
6
7
mysql> explain select * from tb_user where profession = ‘软件工程’;
+—-+————-+———+————+——+———————————–+———————-+———+——-+——+———-+——-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+———————————–+———————-+———+——-+——+———-+——-+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta,idx_user_pro | idx_user_pro_age_sta | 47 | const | 4 | 100.00 | NULL |
+—-+————-+———+————+——+———————————–+———————-+———+——-+——+———-+——-+
1 row in set, 1 warning (0.00 sec)

测试结果,我们可以看到,possible_keys中 idx_user_pro_age_sta,idx_user_pro 这两个索引都可能用到,最终MySQL选择了idx_user_pro_age_sta索引。这是MySQL自动选择的结果。

那么,我们能不能在查询的时候,自己来指定使用哪个索引呢? 答案是肯定的,此时就可以借助于MySQL的SQL提示来完成。 接下来,介绍一下SQL提示。

SQL提示,是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。

use index

建议MySQL使用哪一个索引完成此次查询(仅仅是建议,mysql内部还会再次进行评估)。

1
2
3
4
5
6
7
mysql> explain select * from tb_user use index(idx_user_pro) where profession = ‘软件工程’;
+—-+————-+———+————+——+—————+————–+———+——-+——+———-+——-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+—————+————–+———+——-+——+———-+——-+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro | idx_user_pro | 47 | const | 1 | 100.00 | NULL |
+—-+————-+———+————+——+—————+————–+———+——-+——+———-+——-+
1 row in set, 1 warning (0.00 sec)

ignore index

忽略指定的索引。

1
2
3
4
5
6
7
mysql> explain select * from tb_user ignore index(idx_user_pro) where profession = ‘软件工程’;
+—-+————-+———+————+——+———————-+———————-+———+——-+——+———-+——-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+———————-+———————-+———+——-+——+———-+——-+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta | idx_user_pro_age_sta | 47 | const | 1 | 100.00 | NULL |
+—-+————-+———+————+——+———————-+———————-+———+——-+——+———-+——-+
1 row in set, 1 warning (0.00 sec)

force index

强制使用索引。

1
2
3
4
5
6
7
mysql> explain select * from tb_user force index(idx_user_pro) where profession = ‘软件工程’;
+—-+————-+———+————+——+—————+————–+———+——-+——+———-+——-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+—————+————–+———+——-+——+———-+——-+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro | idx_user_pro | 47 | const | 1 | 100.00 | NULL |
+—-+————-+———+————+——+—————+————–+———+——-+——+———-+——-+
1 row in set, 1 warning (0.00 sec)

覆盖索引

尽量使用覆盖索引,减少select *。 那么什么是覆盖索引呢? 覆盖索引是指 查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到 。

接下来,我们来看一组SQL的执行计划,看看执行计划的差别,然后再来具体做一个解析。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
mysql> explain select id, profession from tb_user where profession = ‘软件工程’ and age =
-> 31 and status = ‘0’ ;
+—-+————-+———+————+——+———————————–+———————-+———+——————-+——+———-+————————–+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+———————————–+———————-+———+——————-+——+———-+————————–+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta,idx_user_pro | idx_user_pro_age_sta | 54 | const,const,const | 1 | 100.00 | Using where; Using index |
+—-+————-+———+————+——+———————————–+———————-+———+——————-+——+———-+————————–+
1 row in set, 1 warning (0.00 sec)

mysql> explain select id,profession,age, status from tb_user where profession = ‘软件工程’
-> and age = 31 and status = ‘0’ ;
+—-+————-+———+————+——+———————————–+———————-+———+——————-+——+———-+————————–+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+———————————–+———————-+———+——————-+——+———-+————————–+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta,idx_user_pro | idx_user_pro_age_sta | 54 | const,const,const | 1 | 100.00 | Using where; Using index |
+—-+————-+———+————+——+———————————–+———————-+———+——————-+——+———-+————————–+
1 row in set, 1 warning (0.00 sec)

mysql> explain select id,profession,age, status, name from tb_user where profession = ‘软件工程’ and age = 31 and status = ‘0’ ;
+—-+————-+———+————+——+———————————–+———————-+———+——————-+——+———-+———————–+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+———————————–+———————-+———+——————-+——+———-+———————–+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta,idx_user_pro | idx_user_pro_age_sta | 54 | const,const,const | 1 | 100.00 | Using index condition |
+—-+————-+———+————+——+———————————–+———————-+———+——————-+——+———-+———————–+
1 row in set, 1 warning (0.00 sec)

mysql> explain select * from tb_user where profession = ‘软件工程’ and age = 31 and status = ‘0’;
+—-+————-+———+————+——+———————————–+———————-+———+——————-+——+———-+———————–+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——+———————————–+———————-+———+——————-+——+———-+———————–+
| 1 | SIMPLE | tb_user | NULL | ref | idx_user_pro_age_sta,idx_user_pro | idx_user_pro_age_sta | 54 | const,const,const | 1 | 100.00 | Using index condition |
+—-+————-+———+————+——+———————————–+———————-+———+——————-+——+———-+———————–+
1 row in set, 1 warning (0.00 sec)

从上述的执行计划我们可以看到,这四条SQL语句的执行计划前面所有的指标都是一样的,看不出来差异。但是此时,我们主要关注的是后面的Extra,前面两天SQL的结果为 Using where; Using Index ; 而后面两条SQL的结果为: Using index condition 。

Extra含义
Using where; Using Index查找使用了索引,但是需要的数据都在索引列中能找到,所以不需要回表查询数据
Using index condition查找使用了索引,但是需要回表查询数据

因为,在tb_user表中有一个联合索引 idx_user_pro_age_sta,该索引关联了三个字段profession、age、status,而这个索引也是一个二级索引,所以叶子节点下面挂的是这一行的主键id。 所以当我们查询返回的数据在 id、profession、age、status 之中,则直接走二级索引直接返回数据了。 如果超出这个范围,就需要拿到主键id,再去扫描聚集索引,再获取额外的数据了,这个过程就是回表。 而我们如果一直使用select * 查询返回所有字段值,很容易就会造成回表查询(除非是根据主键查询,此时只会扫描聚集索引)。

为了大家更清楚的理解,什么是覆盖索引,什么是回表查询,我们一起再来看下面的这组SQL的执行过
程。
A. 表结构及索引示意图:

id是主键,是一个聚集索引。 name字段建立了普通索引,是一个二级索引(辅助索引)。
B. 执行SQL : select * from tb_user where id = 2;

根据id查询,直接走聚集索引查询,一次索引扫描,直接返回数据,性能高。

C. 执行SQL:selet id,name from tb_user where name = 'Arm';

虽然是根据name字段查询,查询二级索引,但是由于查询返回在字段为 id,name,在name的二级索引中,这两个值都是可以直接获取到的,因为覆盖索引,所以不需要回表查询,性能高。

D. 执行SQL:selet id,name,gender from tb_user where name = 'Arm';

由于在name的二级索引中,不包含gender,所以,需要两次索引扫描,也就是需要回表查询,性能相对较差一点。

思考:

一张表, 有四个字段(id, username, password, status), 由于数据量大, 需要对以下SQL语句进行优化, 该如何进行才是最优方案:

1select id,username,password from tb_user where username =’itcast’;

答案: 针对于 username, password建立联合索引, sql为: create index idx_user_name_pass on tb_user(username,password);
这样可以避免上述的SQL语句,在查询的过程中,出现回表查询。

前缀索引

当字段类型为字符串(varchar,text,longtext等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘IO, 影响查询效率。此时可以只将字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。
1). 语法

1create index idx_xxxx on table_name(column(n)) ;

示例:
为tb_user表的email字段,建立长度为5的前缀索引。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
mysql> create index idx_email_5 on tb_user(email(5));
Query OK, 0 rows affected (0.04 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> show index from tb_user;
+———+————+———————-+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression |
+———+————+———————-+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
| tb_user | 0 | PRIMARY | 1 | id | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 0 | idx_user_phone | 1 | phone | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_name | 1 | name | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 1 | profession | A | 16 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 2 | age | A | 22 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 3 | status | A | 24 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro | 1 | profession | A | 16 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_email_5 | 1 | email | A | 23 | 5 | NULL | YES | BTREE | | | YES | NULL |
+———+————+———————-+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
8 rows in set (0.00 sec)

2). 前缀长度
可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高, 唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。

1
2
select count(distinct email) / count(*) from tb_user ;
select count(distinct substring(email,1,5)) / count(*) from tb_user ;

3). 前缀索引的查询流程

单列索引与联合索引

单列索引:即一个索引只包含单个列。
联合索引:即一个索引包含了多个列。
我们先来看看 tb_user 表中目前的索引情况:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
mysql> show index from tb_user;
+———+————+———————-+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression |
+———+————+———————-+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
| tb_user | 0 | PRIMARY | 1 | id | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 0 | idx_user_phone | 1 | phone | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_name | 1 | name | A | 24 | NULL | NULL | | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 1 | profession | A | 16 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 2 | age | A | 22 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro_age_sta | 3 | status | A | 24 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_user_pro | 1 | profession | A | 16 | NULL | NULL | YES | BTREE | | | YES | NULL |
| tb_user | 1 | idx_email_5 | 1 | email | A | 23 | 5 | NULL | YES | BTREE | | | YES | NULL |
+———+————+———————-+————–+————-+———–+————-+———-+——–+——+————+———+—————+———+————+
8 rows in set (0.00 sec)

在查询出来的索引中,既有单列索引,又有联合索引。
接下来,我们来执行一条SQL语句,看看其执行计划:

1
2
3
4
5
6
7
mysql> explain select id, phone, name from tb_user where phone = ‘17799990010’ and name =’韩信’;
+—-+————-+———+————+——-+——————————+—————-+———+——-+——+———-+——-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——-+——————————+—————-+———+——-+——+———-+——-+
| 1 | SIMPLE | tb_user | NULL | const | idx_user_phone,idx_user_name | idx_user_phone | 46 | const | 1 | 100.00 | NULL |
+—-+————-+———+————+——-+——————————+—————-+———+——-+——+———-+——-+
1 row in set, 1 warning (0.00 sec)

通过上述执行计划我们可以看出来,在and连接的两个字段 phone、name上都是有单列索引的,但是最终mysql只会选择一个索引,也就是说,只能走一个字段的索引,此时是会回表查询的。

紧接着,我们再来创建一个phone和name字段的联合索引来查询一下执行计划。

1
2
3
4
5
6
7
8
9
10
11
mysql> create unique index idx_user_phone_name on tb_user(phone,name);
Query OK, 0 rows affected (0.03 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> explain select id, phone, name from tb_user use index(idx_user_phone_name) where phone=’17799990010′ and name=’韩信’;
+—-+————-+———+————+——-+———————+———————+———+————-+——+———-+————-+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+—-+————-+———+————+——-+———————+———————+———+————-+——+———-+————-+
| 1 | SIMPLE | tb_user | NULL | const | idx_user_phone_name | idx_user_phone_name | 248 | const,const | 1 | 100.00 | Using index |
+—-+————-+———+————+——-+———————+———————+———+————-+——+———-+————-+
1 row in set, 1 warning (0.00 sec)

此时,查询时,就走了联合索引,而在联合索引中包含 phone、name的信息,在叶子节点下挂的是对应的主键id,所以查询是无需回表查询的。

在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引。

如果查询使用的是联合索引,具体的结构示意图如下: